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CryptoVerif, http://cryptoverif.inria.fr/

CryptoVerif is a mechanized prover that works in the computational
model of cryptography (the model typically used by cryptographers):

@ Messages are bitstrings.
@ Cryptographic primitives are functions from bitstrings to bitstrings.

@ The adversary is a probabilistic Turing machine.
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CryptoVerif, http://cryptoverif.inria.fr/

CryptoVerif

generates proofs by sequences of games.
proves secrecy, authentication, and indistinguishability properties.

provides a generic method for specifying properties of
cryptographic primitives which handles MACs (message
authentication codes), symmetric encryption,
public-key encryption, signatures, hash functions,
Diffie-Hellman key agreements, ...

works for N sessions (polynomial in the security parameter), with an
active adversary.

gives a bound on the probability of an attack (exact security).

has an automatic proof strategy and can also be manually guided.
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Proofs by sequences of games

Proofs in the computational model are typically proofs by sequences of
games [Shoup, Bellare&Rogaway]:

@ The first game is the real protocol.

@ One goes from one game to the next by syntactic transformations or
by applying the definition of security of a cryptographic primitive.
The difference of probability between consecutive games is negligible.

@ The last game is “ideal”: the security property is obvious from the
form of the game.

(The advantage of the adversary is 0 for this game.)

— — —
Protocol p1 p2 e Pn Property
to prove |negligible negligible negligible obvious
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Input and output of the tool

@ Prepare the input file containing

o the specification of the protocol to study (initial game),
e the security assumptions on the cryptographic primitives,
e the security properties to prove.

@ Run CryptoVerif
© CryptoVerif outputs

e the sequence of games that leads to the proof,

@ a succinct explanation of the transformations performed between
games,

e an upper bound of the probability of success of an attack.
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Process calculus for games

Games are formalized in a probabilistic process calculus: a small,
specialized programming language.

The processes define the oracles that the adversary can call.

The runtime of processes is bounded:
@ bounded number of copies of processes,

@ bounded length of messages given as input to oracles.
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Process calculus for games: terms

Terms represent computations on messages (bitstrings).

M = terms
X,V,Z variable
f(My,...,M,) function application

Function symbols f correspond to functions computable by deterministic
Turing machines that always terminate.
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Process calculus for games: processes

Q= oracle definitions
0 end
Q| Q parallel composition
foreach i < N do @ replication N times
O(x1: T1,...,Xm : Tm) := P oracle definition
P = oracle body
yield end
return(My, ..., My); Q result
event e(My,..., Mpy,); P event
x& TP random number generation (uniform)
x: T+ M:;P assignment
if M then P else P’ conditional

insert L(My,...,Mpy,); P add an entry to list L
get L(x1,...,Xn) suchthat M in P else P’
list lookup
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Example: 1. symmetric encryption

We consider a probabilistic, length-revealing encryption scheme.

Definition (Symmetric encryption scheme SE)

e (Randomized) encryption function enc_r(m, k, r) takes as input a
message m, a key k, and random coins r.

We define enc(m, k) = r & enc_seed:; enc_r(m, k,r).

@ Decryption function dec(c, k) such that

dec(enc_r(m, k,r'), k) = injbot(m)

The decryption returns a bitstring or bottom:
@ bottom when decryption fails,
@ the cleartext when decryption succeeds.

The injection injbot maps a bitstring to the same bitstring in
bitstring U {bottom}.
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Example: 2. MAC

Definition (Message Authentication Code scheme MAC)

@ MAC function mac(m, k) takes as input a message m and a key k.

@ Verification function verify(m, k, t) such that

verify(m, k, mac(m, k)) = true.

A MAC is essentially a keyed hash function.

A MAC guarantees the integrity and authenticity of the message because
only someone who knows the secret key can build the MAC.
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Example: 3. encrypt-then-MAC

We define an authenticated encryption scheme by the encrypt-then-MAC
construction:

enc’(m, (k, mk)) = cl1||mac(cl, mk) where cI = enc(m, k).

letfun full _enc(m : bitstring, k : key, mk : mkey) =
cl «+ enc(m, k);

concat(cl, mac(cl, mk)).

letfun full_dec(c : bitstring, k : key, mk : mkey) =
let concat(cl, macl) = c in
(if verify(cl, mk, macl) then dec(cl, k) else bottom)
else

bottom.
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Security assumptions on primitives

The most frequent cryptographic primitives are already specified in a
library. The user can use them without redefining them.

In the example:

e The MAC is SUF-CMA (strongly unforgeable under chosen message
attacks).
An adversary that has access to the MAC and verification oracles has a
negligible probability of forging a MAC (not produced by the MAC oracle).
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Security assumptions on primitives

The most frequent cryptographic primitives are already specified in a
library. The user can use them without redefining them.

In the example:

e The MAC is SUF-CMA (strongly unforgeable under chosen message
attacks).
An adversary that has access to the MAC and verification oracles has a
negligible probability of forging a MAC (not produced by the MAC oracle).
@ The encryption is IND-CPA (indistinguishable under chosen
plaintext attacks).
An adversary has a negligible probability of distinguishing the encryption of
two messages of the same length.
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Security properties to prove

In the example:
@ The encrypt-then-MAC scheme is IND-CPA.
@ The encrypt-then-MAC scheme is INT-CTXT.
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Example: encrypt-then-MAC IND-CPA

An adversary has a negligible probability of distinguishing the encryption
of two messages of the same length.

Definition (INDistinguishability under Chosen Plaintext Attacks,

IND-CPA)

ind—cpa

Succge (t, e, ) =
max 2Pr |b & {0,1}; k & key; b/ AnURCDR c = p] —1

where A runs in time at most t,

calls enc(LR(., ., b), k) at most g. times on messages of length at most /,
LR(x,y,0) = x, LR(x,y,1) =y, and LR(x, y, b) is defined only when x
and y have the same length.

We program the IND-CPA experiment in CryptoVerif, for the
encrypt-then-MAC scheme.
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IND-CPA: initialization

Ostart() :== b £ bool; k £ key; mk E mkey; return

Initialization:
@ Define an oracle Ostart. (The adversary will call this oracle.)
@ Ostart chooses a random boolean b

© Then it generates the key for the encrypt-then-MAC scheme, hence
an encryption key and a MAC key.

@ It returns nothing.
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IND-CPA: left-or-right encryption oracle

enc(LR(.,., b), k) called at most gEnc times
LR(x,y,0) = x, LR(x,y,1) =y, and LR(x, y, b) is defined only when x
and y have the same length.

foreach / < gEnc do

Oenc(m1l : bitstring, m2 : bitstring) :=
if Z(ml) = Z(m2) then

mO0 < if b then ml else m2;
return(full _enc(mO0, k, mk)).

@ foreach / < gEnc do represents gEnc copies, indexed by
i € [1,gEnc]. The oracle can be called gEnc times.
@ The oracle takes two messages as input, ml and m2.
© It verifies that they have the same length (Z(ml) = Z(m?2)).
Z(x) is the bitstring of the same length as x containing only zeroes.
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IND-CPA: left-or-right encryption oracle

enc(LR(.,., b), k) called at most gEnc times
LR(x,y,0) = x, LR(x,y,1) =y, and LR(x, y, b) is defined only when x
and y have the same length.

foreach / < gEnc do

Oenc(m1l : bitstring, m2 : bitstring) :=

if Z(ml) = Z(m2) then

mO0 < if b then ml else m2;

return(full_enc(m0, k, mk)).

© mo0 is set to LR(m1, m2, b).

© The oracle returns the encryption of m0.
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Example: summary of the initial game

Ostart() :== b & bool; k & key; mk & mkey; return;
foreach / < gEnc do

Oenc(m1l : bitstring, m2 : bitstring) :=

if Z(ml) = Z(m2) then

mO0 <« if b then m1 else m2;

return(full _enc(mO0, k, mk)).

We prove secrecy of b:
query secret b
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@ CryptoVerif input file: enc-then-MAC-IND-CPA.ocv
o run CryptoVerif

@ output
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Indistinguishability

Ql ~p Q2

means that an adversary has at most probability p of distinguishing the
two processes (games) Q1 and Q».

(p is a function of the adversary, more precisely of its runtime and of the
numbers of queries it makes to oracles.)

Lemma
Q Reflexivity: Q ~p Q.
@ Symmetry: =, is symmetric.
@ Transitivity: if Q =, Q" and Q' =y Q", then Q ~pypy Q”.
@ Proof by reduction: if Q ~, Q" and C is an adversary that calls
oracles of Q resp. Q' then C[Q] =, C[Q’], where
p'(C") = p(C'[C[]]) for any adversary C'.

v
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Proof technique

We transform a game Gp into an indistinguishable one using:

e indistinguishability properties L ~, R given as axioms and that come
from security assumptions on primitives. These equivalences are
used inside a bigger game, using a proof by reduction:

Gi1 ~o C[L] =p C[R] ~o G>
@ syntactic transformations: simplification, expansion of assignments,
We obtain a sequence of games Gg ~p, G =~ ... ~p, Gm, which implies

Go Apy+-tpm Cm-

If some trace property holds up to probability p in G, then it holds up
to probability p4+ p1 + -+ + pm in Gp.
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Symmetric encryption: definition of security (IND-CPA)

An adversary has a negligible probability of distinguishing the encryption
of two messages of the same length.

Definition (INDistinguishability under Chosen Plaintext Attacks,

IND-CPA)

ind—cpa

Succgg (e, ) =
max 2 Pr [ & (0.1} k & key; o« AnURE-DK) . ff — p| 1

where A runs in time at most t,

calls enc(LR(., ., b), k) at most g. times on messages of length at most /,
LR(x,y,0) = x, LR(x,y,1) =y, and LR(x, y, b) is defined only when x
and y have the same length.
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IND-CPA symmetric encryption: CryptoVerif definition

dec(enc_r(m, k,r'), k) = injbot(m)

k& key; foreach i < g. do Oenc(x : bitstring) :=

¥ & enc_seed; return(enc_r(x, k, r'))

k& key; foreach i < g, do Oenc(x : bitstring) :=

¥ & enc_seed; return(enc_r(Z(x), k, r'))

Z(x) is the bitstring of the same length as x containing only zeroes.
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IND-CPA symmetric encryption: CryptoVerif definition

dec(enc_r(m, k,r'), k) = injbot(m)

k& key; foreach i < g, do Oenc(x : bitstring) :=
¥ & enc_seed; return(enc_r(x, k, r'))
~Succd =P (time, e, maxl(x))
k& key; foreach i < g. do Oenc(x : bitstring) :=
r' & enc_seed; return(enc_r'(Z(x), k, r'))
Z(x) is the bitstring of the same length as x containing only zeroes.

CryptoVerif understands such specifications of primitives.
They can be reused in the proof of many protocols.
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IND-CPA proof: initial game

Ostart() := b £ bool; k bil key; mk £ mkey; return;
foreach / < gEnc do

Oenc(m1l : bitstring, m2 : bitstring) :=

if Z(m1) = Z(m2) then

mO0 <« if b then m1 else m2;

return((cl < (r & enc_seed; enc_r(mO0, k, r)); concat(cl, mac(cl, mk))))

CryptoVerif inlines the definition of full_enc.
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IND-CPA proof: expand terms into processes

Ostart() := b & bool; k & key; mk & mkey; return;
foreach / < gEnc do

Oenc(m1l : bitstring, m2 : bitstring) :=

if Z(ml) = Z(m2) then

if b then

r & enc_seed; c1 « enc_r(ml, k, r); return(concat(cl, mac(cl, mk)))

else

r & enc_seed; c1 « enc_r(m2, k, r); return(concat(cl, mac(cl, mk)))
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IND-CPA proof: renaming variables

Ostart() := b & bool; k & key; mk & mkey; return;
foreach / < gEnc do
Oenc(m1 : bitstring, m2 : bitstring) :=
if Z(ml) = Z(m2) then
if b then
r & enc_seed; c1 + enc_r(ml, k, rp); return(concat(cl, mac(cl, mk)))

else

r & enc_seed; c1 + enc_r(m2, k, r); return(concat(cl, mac(cl, mk)))

CryptoVerif renames the two definitions of r to distinct names.

Bruno Blanchet (INRIA) December 2020 26 /62



IND-CPA proof: apply the IND-CPA assumption

Ostart() := b £ bool; k bil key; mk £ mkey; return;

foreach / < gEnc do
Oenc(m1l : bitstring, m2 : bitstring) :=
if Z(ml) = Z(m2) then
if b then
r & enc_seed; c1 + enc_r'(Z(ml), k, ra); return(concat(c1, mac(cl, mk
else
rs & enc_seed; c1 + enc_r'(Z(m2), k, r3); return(concat(c1, mac(cl, mk

CryptoVerif uses the IND-CPA assumption. It replaces the cleartext
messages (m1 and m?2) with bitstrings of the same length containing
only zeroes (Z(ml), Z(m2)).

Probability: Succi;lg_cPa(t’, gEnc, I,) with t' = t + gEnc(time(=, I,) +
time(mac, I.1) + time(concat, I1) + 2time(Z, I,)).
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IND-CPA proof: merge

Ostart() :== b & bool; k & key; mk pil mkey; return;
foreach / < gEnc do

Oenc(m1l : bitstring, m2 : bitstring) :=

if Z(ml) = Z(m2) then

rs & enc_seed; c1 + enc_r'(Z(m2), k, r3); return(concat(cl, mac(cl, mk)))

CryptoVerif merges the two branches of the test if b then, because they
execute the same code, knowing that Z(ml) = Z(m2) by the test above.

b is no longer used in the game, hence it is secret.
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Final result

Result

The probability that an adversary that runs in time at most t, makes at
most ge encryption queries of length at most / breaks the IND-CPA
property of encrypt-then-MAC is

2SucciS”§7Cpa(t’, )

where
t' =t + qe(time(=, /) + time(mac, I') + time(concat, I') + 2time(Z, /))
I" is the length of ciphertexts for cleartexts of length /.

The factor 2 is added due to the definition of secrecy.
(It could be removed with a different proof.)
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INT-CTXT

Definition (INT-CTXT symmetric encryption)

The advantage of the adversary against ciphertext integrity (INT-CTXT)
of a symmetric encryption scheme SE is:

int—ctxt

SUCCSE (ta e, qd, Ie’ Id) =

k & key; c « Aenc(-k)dec(k)£L . dec(c, k) # L A

max Pr [ ™
c is not the result of a call to the enc(., k) oracle

where A runs in time at most t,
calls enc(., k) at most g times with messages of length at most /e,
calls dec(., k) # L at most g4 times with messages of length at most /.

We program the INT-CTXT experiment in CryptoVerif, for the
encrypt-then-MAC scheme.
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INT-CTXT experiment in CryptoVerif

Ostart() := k yil key; mk £ mkey; return;
((foreach ienc < gEnc do
Oenc(mO : bitstring) :=
c0 < full_enc(mO0, k, mk); insert ciphertexts(c0); return(c0))
|
(foreach idec < gDec do
OdecTest(c : bitstring) :=
get ciphertexts(= c) in return(true) else
if full_dec(c, k, mk) # bottom
then event bad; return(true)
else return(false)))
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o CryptoVerif input file: enc-then-MAC-INT_CTXT.ocv
o run CryptoVerif

@ output
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Arrays

A variable defined under a replication is implicitly an array:

foreach ienc < gEnc do
Oenc(mO[ienc] : bitstring) := cO[ienc] < full_enc(mQ[ienc]|, k, mk); . ..

Requirements:
@ Only variables with the current indices can be assigned.

@ Variables may be defined at several places, but only one
definition can be executed for the same indices.
(if ... then x < M; P else x + M’; P’ is ok)
So each array cell can be assigned at most once.

Arrays allow one to remember the values of all variables during the whole
execution

Bruno Blanchet (INRIA) December 2020 33/62



Arrays (continued)

find performs an array lookup:

foreach i< Ndo ... x+ M;P
| O(y : T) :=find j < N suchthat defined(x[j]) A y = x[j] then ...

Note that find is here used outside the scope of x.

This is the only way of getting access to values of variables outside their
syntactic scope.

When several array elements satisfy the condition of the find,
the returned index is chosen randomly, with uniform probability.
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Arrays versus lists

Lists are converted into arrays:

foreach i < N do ...insert L(M, M'); P
| O(x": T) :=get L(x,y) suchthat x' = x in P'(y)

becomes

foreach i < N do ...x[i] < M;y[i] + M'; P
|O(X': T):=
find j < N suchthat defined(x[j], y[j]) A X' = x[j] then P'(y[j])

Arrays avoid the need for explicit list insertion instructions, which would
be hard to guess for an automatic tool.
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MAC: definition of security (SUF-CMA)

A MAC guarantees the integrity and authenticity of the message because
only someone who knows the secret key can build the MAC.
More formally, Succ,s\jl‘fA_Ccma(t, Gms Gv, 1) is negligible if ¢ is polynomial in

the security parameter:

Definition (Strong UnForgeability under Chosen Message Attacks,

SUF-CMA)

suf—cma

SLICCMAC (ta qquval) =

max Pr | K & mkey; (m, s) < Amac(-k)verify(-k) - verify(m, k, s) A
A no query to the oracle mac(., k) with message m returned s

where A runs in time at most t,
calls mac(., k) at most g, times with messages of length at most /,
calls verify(., k,.) at most g, times with messages of length at most /.

4
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MAC: intuition behind the CryptoVerif definition

By the previous definition, up to negligible probability,
@ the adversary cannot forge a correct MAC

@ so, assuming k bil mkey is used only for generating and verifying
MACs, the verification of a MAC with verify(m, k, t) can succeed
only if mis in the list (array) of messages whose mac(-, k) has been
computed, with result t by the protocol

@ so we can replace a call to verify with an array lookup:
if the call to mac is mac(x, k), we replace verify(m, k, t) with

find j < N suchthat defined(x[j]) A

m = x[j] A t = mac(m, k) then true else false
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MAC: CryptoVerif definition

verify(m, k, mac(m, k)) = true

kK & mkey; (
foreach ip, < g, do Omac(x : bitstring) := return(mac(x, k)) |
foreach i, < g, do Overify(m : bitstring, t : macstring) :=
return(verify(m, k, t)))
k& mkey; (
foreach ip, < g, do Omac(x : bitstring) := ma < mac(x, k); return(ma)
foreach i, < q, do Overify(m : bitstring, t : macstring) :=
find j < N suchthat defined(x[j], ma[j]) A m = x[j] A

t = malj] then true else false)
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MAC: CryptoVerif definition

verify(m, k, mac(m, k)) = true

k& mkey; (
foreach ip, < g, do Omac(x : bitstring) := return(mac(x, k)) |
foreach i, < g, do Overify(m : bitstring,t : macstring) :=
return(verify(m, k, t)))

NSuccf\'j;Ema (time,gm,qv,max(maxl(x),maxl(m)))

k& mkey; (
foreach i, < g, do Omac(x : bitstring) := ma <+ mac’(x, k); return(ma
foreach i, < g, do Overify(m : bitstring,t : macstring) :=
find j < N suchthat defined(x[j], ma[j]) A m = x[j] A
t = malj] then true else false)
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MAC: using the CryptoVerif definition

CryptoVerif applies the previous rule automatically in any game, perhaps
containing several occurrences of mac(-, k) and of verify(-, k, ), provided
the key k is used only for mac and verify:
@ Each occurrence of mac(x;, k) is replaced with
ma; < mac'(x;, k); ma;.
e Each occurrence of verify(-, k,-) is replaced with a find that looks in
all arrays x;, ma; of computed MACs (one array for each occurrence
of function mac).
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INT-CTXT proof: initial game

Ostart() := k & key; mk & mkey; return;
((foreach ienc < gEnc do Oenc(moO : bitstring) :=

c0 < (cl «(r & enc_seed; enc_r(mo0, k, r)); concat(cl, mac(cl, mk)));
insert ciphertexts(c0); return(c0))
| (foreach idec < gDec do OdecTest(c : bitstring) :=
get ciphertexts(= c) in return(true) else
if (let concat(c2, macl) = c in
if verify(c2, mk, macl) then dec(c2, k) else bottom
else bottom) # bottom
then event bad; return(true)

else return(false)))

CryptoVerif inlines full _enc and full _dec.
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INT-CTXT proof: encode insert and get

Ostart() := k & key; mk & mkey; return;
((foreach ienc < gEnc do Oenc(mO : bitstring) :=

c0 < (cl «(r & enc_seed; enc_r(mo0, k, r)); concat(cl, mac(cl, mk)));
ciphertexts; <— c0; return(c0))
| (foreach idec < gDec do OdecTest(c : bitstring) :=
find u < gEnc suchthat defined(ciphertexts;[u]) A ciphertexts;[u] = ¢
then return(true)
else if (let concat(c2, macl) = c in
if verify(c2, mk, macl) then dec(c2, k) else bottom
else bottom) # bottom
then event bad; return(true)

else return(false)))
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INT-CTXT proof: expand terms into processes

Ostart() := k £ key; mk bil mkey; return;
((foreach ienc < gEnc do Oenc(mO : bitstring) :=

r & enc_seed; c1 « enc_r(mo, k, r); c0 < concat(cl, mac(cl, mk)));
return(c0))
| (foreach idec < gDec do OdecTest(c : bitstring) :=

find u < gEnc suchthat defined(cO[u]) A cO[u] = ¢
then return(true)
else let concat(c2, macl) = c in

if verify(c2, mk, macl) then

if dec(c2, k) # bottom then event bad; return(true)
else return(false)
else return(false)

else return(false)))
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INT-CTXT proof: apply SUF-CMA MAC

Ostart() := k £ key; mk ¥is mkey; return;
((foreach ienc < qEnc do Oenc(mO : bitstring) =

r <5 enc_seed; cl < enc_r(m0, k, r);

c0 + concat(cl,(ma2 + mac’(cl, mk); ma2)); return(c0))
| (foreach idec < gDec do OdecTest(c : bitstring) :=

find u < gEnc suchthat defined(cO[u]) A cO[u] = ¢

then return(true)

else let concat(c2, macl) = cin

if (find ri < gEnc suchthat defined(c1[ri], ma2[ri]) A c2 = c1[ri] A
macl = ma2[ri] then true else false) then
if dec(c2, k) # bottom then event bad; return(true)

else return(false)
else return(false)

else return(false)))
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INT-CTXT proof: expand terms into processes; simplify

Ostart() := k ¥is key; mk £ mkey; return;
((foreach ienc < qEnc do Oenc(mO : bitstring) =

r & enc_seed; c1 « enc_r(mo, k, r);
ma2 <+ mac’(c1, mk); c0 < concat(cl, ma2);return(c0))
| (foreach idec < gDec do OdecTest(c : bitstring) :=
find u < gEnc suchthat defined(cO[u]) A cO[u] = ¢
then return(true)
else let concat(c2, macl) = cin
find ri < gEnc suchthat defined(c1[ri], ma2[ri]) A c2 = c1[ri] A
macl = ma2[ri] then
event bad; return(true)
else return(false)

else return(false)))
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INT-CTXT proof: simplify

Ostart() := k <5 key; mk <5 mkey'; return;
((foreach ienc < gEnc do Oenc(mO : bitstring) :=

r & enc_seed; c1 « enc_r(m0, k, r);

ma2 < mac’(cl, mk); cO < concat(cl, ma2); return(c0))
(foreach idec < gDec do OdecTest(c : bitstring) :=

find u < gEnc suchthat defined(cO[u]) A cO[u] = ¢

then return(true)

else let concat(c2, macl) = c in return(false)

else return(false)))

When the first find fails, the second find also fails, so it is removed.
Event bad no longer occurs: the proof succeeds.
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Final result

Result

The probability that an adversary that runs in time at most t, makes at
most g. encryption queries and gy decryption queries breaks the
INT-CTXT property of encrypt-then-MAC is at most

suf—cma

Succiiac ™ (1, Ge, 90, 1)

where

t' =t + g.time(enc_r, l) + g.time(concat, I') + q4q.time(=, ") +
gqtime(let concat,l') + qqtime(dec, I")

I is the maximum length of cleartexts

I" is the maximum length of ciphertexts

1" is the maximum length of ciphertexts with MACs
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First experiments

Tested on the following toy protocols (original and corrected versions):
— Otway-Rees (shared-key)

— Yahalom (shared-key)

— Denning-Sacco (public-key)

— Woo-Lam shared-key and public-key

— Needham-Schroeder shared-key and public-key

Shared-key encryption is assumed to be IND-CPA and INT-CTXT
(authenticated encryption scheme).

Public-key encryption is assumed to be IND-CCA2.

We prove secrecy of session keys and authentication.
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Results

@ In most cases, CryptoVerif succeeds in proving the desired properties
when they hold.
Only exception: Needham-Schroeder public-key when the exchanged
key is the nonce Na.

@ Obviously CryptoVerif always fails to prove properties that do not
hold.

@ Some public-key protocols need manual guidance.
(Give the cryptographic proof steps and single assignment
renaming instructions.)

@ Runtime: 7 ms to 35 s, average: 5 s on a Pentium M 1.8 GHz.
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Case studies

Full domain hash signature (with David Pointcheval)

Encryption schemes of Bellare-Rogaway'93 (with David Pointcheval)
Kerberos V, with and without PKINIT (with Aaron D. Jaggard,
Andre Scedrov, and Joe-Kai Tsay)

e OEKE (variant of Encrypted Key Exchange)
@ A part of an F# implementation of the TLS transport protocol

(Microsoft Research and MSR-INRIA)

SSH Transport Layer Protocol (with David Cadé)

Avionics protocols (ARINC 823, ICAO9880 3rd edition)

TextSecure v3 (with Nadim Kobeissi and Karthikeyan Bhargavan)
TLS 1.3 draft 18 (with Karthikeyan Bhargavan and Nadim Kobeissi)
WireGuard (with Benjamin Lipp and Karthikeyan Bhargavan)

HPKE (with Joél Alwen, Eduard Hauck, Eike Kiltz, Benjamin Lipp,
and Doreen Riepel)
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https://eprint.iacr.org/2006/069
https://eprint.iacr.org/2006/069
https://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetJaggardScedrovTsayAsiaCCS08.html
https://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetCSF12.html
https://prosecco.gforge.inria.fr/personal/bblanche/publications/CadeBlanchetJoWUA13.html
https://prosecco.gforge.inria.fr/personal/bblanche/publications/BlanchetCSF17.html
https://prosecco.gforge.inria.fr/personal/bblanche/publications/KobeissiBhargavanBlanchetEuroSP17.html
https://prosecco.gforge.inria.fr/personal/bblanche/publications/BhargavanBlanchetKobeissiSP2017.html
https://hal.inria.fr/hal-02100345
https://eprint.iacr.org/2020/1499

Conclusion

CryptoVerif can automatically prove the security of primitives and
protocols.

@ The security assumptions are given as indistinguishability properties
(proved manually once).

@ The protocol or scheme to prove is specified in a process calculus.

@ The prover provides a sequence of indistinguishable games that lead
to the proof and a bound on the probability of an attack.

@ The user is allowed (but does not have) to interact with the prover
to make it follow a specific sequence of games.
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Current and future work

@ Improve and generalize some game transformations.
@ Combine CryptoVerif with EasyCrypt:
e E.g., prove properties of primitives in EasyCrypt, and use them to
prove protocols in CryptoVerif.
@ Prove implementations of protocols in the computational model:

e CryptoVerif can already generate implementations in OCaml.
e extend it to generate implementations in Fx
(proved security properties can be translated as well;
further proofs can be done on the generated Fx code)
@ Improve support for state:

e Loops with mutable state;
e Primitives with internal state.
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Additional material
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Alternative syntax

Shown syntax ‘ Alternative syntax
foreach i <ndo |!i<n
foreach i < ndo | !n (when i is not used)

x@T;P new x: ;P

x <+ M; P let x=Min P

Oracles front-end ‘ Channels front-end
O(x1: Th,...;xXm: Tm) =P | in(c,x: T); P
return(My, ..., Mp); Q out(c, M); Q
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Syntactic transformations (1)

Expansion of assignments: replacing a variable with its value.
(Not completely trivial because of array references.)

If pk is defined by

pk < pkgen(r)

and there are no array references to pk, then pk is replaced with
pkgen(r) in the game and the definition of pk is removed.
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Syntactic transformations (2)

Single assignment renaming: when a variable is assigned at several
places, rename it with a distinct name for each assignment.
(Not completely trivial because of array references.)

Ostart() := ka & Tk kg & Ty return; (Qx | Qs)
Qk = foreach i < ndo Ok(h: Ty, k: Ty) =
if h= A then k' < k4 else
if h= B then k' « kg else k' + k
Qs = foreach i’ < n’ do Os(h' : T}) :=
find j < n suchthat defined(h[j], K'[j]) A h’ = h[j] then Py(K'[j])

else P,
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Syntactic transformations (2)

Single assignment renaming: when a variable is assigned at several
places, rename it with a distinct name for each assignment.
(Not completely trivial because of array references.)

Ostart() := ka < Ti; kg < Ti; return; (Qx | Qs)

Qk = foreach i < ndo Ok(h: Tp, k: Ty) =
if h = A then k{ + ku else
if h= B then k) < kg else kj < k

Qs = foreach /" < n’ do Os(h' : T}) :=
find j < n suchthat defined(h[j], k1[j]) A h' = h[j] then Py(k{[j])
orfind j < n suchthat defined(h[j], k3[j]) A ' = h[j] then Py (k[)])
orfind j < n suchthat defined(h[j], k5[j]) A i’ = h[j] then Py (K[)])
else P>

<
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Syntactic transformations (3)

Move new: move restrictions downwards in the game as much as
possible, when there is no array reference to them.
(Moving x & T under a if or a find duplicates it.
A subsequent single assignment renaming will distinguish cases.)

R .
x < nonce; if ¢ then P; else P>

becomes R R
if ¢ then x <+ nonce; P; else x < nonce; P
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Syntactic transformations (4)

o Merge arrays: merge several variables xi, ..., X, into a single
variable x; when they are used for different indices (defined in
different branches of a test if or find).

@ Merge branches of if or find when they execute the same code, up
to renaming of variables without array accesses.
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Syntactic transformations (5): manual transformations

Insert an instruction: insert a test to distinguish cases; insert a variable
definition; ...

Preserves the semantics of the game (e.g., the rest of the code is copied
in both branches of the inserted test).

P becomes

if cond then P else P

Subsequent transformations can transform P differently, depending on
whether cond holds.
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Syntactic transformations (6): manual transformations

@ Insert an event: to apply Shoup's lemma.

e A subprocess P becomes event e.
e The probability of distinguishing the two games is the probability of
executing event e. It will be bound by a proof by sequences of games.

@ Replace a term with an equal term. CryptoVerif verifies that the
terms are really equal.
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Simplification and elimination of collisions

@ CryptoVerif collects equalities that come from:
e Assignments: x < M; P implies that x = M in P

o Tests: if M = N then P implies that M = N in P
e Definitions of cryptographic primitives
o When a find guarantees that x[j] is defined, equalities that hold at

definition of x also hold under the find (after substituting j for the
array indices at the definition of x)

e Elimination of collisions: if x is created by new x : T, x[i] = x[J]
implies i = j, up to negligible probability (when T is large)

@ These equalities are combined to simplify terms.

@ When terms can be simplified, processes are simplified accordingly.
For instance:
o If M simplifies to true, then if M then P; else P, simplifies to P;.
e If a condition of find simplifies to false, then the corresponding
branch is removed.
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Security properties

@ Secrecy: the adversary cannot distinguish the secrets from
independent random numbers with several test queries.

e Correspondence: event(e;(x)) = event(ex(x)) means that, if e;(x)
has been executed, then ex(x) has been executed.

@ Injective correspondence: inj-event(e;(x)) = inj-event(ex(x))
means that each execution of e;(x) corresponds to a distinct
execution of ex(x).
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Proof strategy: advice

@ One tries to execute each transformation given by the
definition of a cryptographic primitive.

@ When it fails, CryptoVerif tries to analyze why the transformation
failed, and suggests syntactic transformations that could make it
work.

@ One tries to execute these syntactic transformations.
(If they fail, they may also suggest other syntactic
transformations, which are then executed.)

@ We retry the cryptographic transformation, and so on.
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